Nanoscale dielectric properties of insulating thin films: from single point measurements to quantitative images.
نویسندگان
چکیده
Dielectric relaxation (DR) has shown to be a very useful technique to study dielectric materials like polymers and other glass formers, giving valuable information about the molecular dynamics of the system at different length and time scales. However, the standard DR techniques have a fundamental limitation: they have no spatial resolution. This is of course not a problem when homogeneous and non-structured systems are analyzed but it becomes an important limitation for studying the local properties of heterogeneous and/or nano-structured materials. To overcome this constrain we have developed a novel approach that allows quantitatively measuring the local dielectric permittivity of thin films at the nanoscale by means of Electrostatic Force Microscopy. The proposed experimental method is based on the detection of the local electric force gradient at different values of the tip-sample distance. The value of the dielectric permittivity is then calculated by fitting the experimental points using the Equivalent Charge Method. Even more interesting, we show how this approach can be extended in order to obtain quantitative dielectric images of insulating thin films with an excellent lateral resolution.
منابع مشابه
Effect of Thickness on Properties of Copper Thin Films Growth on Glass by DC Planar Magnetron Sputtering
Copper thin films with nano-scale structure have numerous applications in modern technology. In this work, Cu thin films with different thicknesses from 50–220 nm have been deposited on glass substrate by DC magnetron sputtering technique at room temperature in pure Ar gas. The sputtering time was considered in 4, 8, 12 and 16 min, respectively. The thickness effect on the structural, mo...
متن کاملInvestigations on structural and electrical properties of Cadmium Zinc Sulfide thin films
Nowadays, II – IV group semiconductor thin films have attracted considerable attention from the research community because of their wide range of application in the fabrication of solar cells and other opto-electronic devices. Cadmium zinc sulfide (Zn-CdS) thin films were grown by chemical bath deposition (CBD) technique. X-ray diffraction (XRD) is used to analyze the structure and crystallite ...
متن کاملInvestigations on structural and electrical properties of Cadmium Zinc Sulfide thin films
Nowadays, II – IV group semiconductor thin films have attracted considerable attention from the research community because of their wide range of application in the fabrication of solar cells and other opto-electronic devices. Cadmium zinc sulfide (Zn-CdS) thin films were grown by chemical bath deposition (CBD) technique. X-ray diffraction (XRD) is used to analyze the structure and crystallite ...
متن کاملScanning Probe Microscopy on heterogeneous CaCu3Ti4O12 thin films
The conductive atomic force microscopy provided a local characterization of the dielectric heterogeneities in CaCu3Ti4O12 (CCTO) thin films deposited by MOCVD on IrO2 bottom electrode. In particular, both techniques have been employed to clarify the role of the inter- and sub-granular features in terms of conductive and insulating regions. The microstructure and the dielectric properties of CCT...
متن کاملStructural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films
Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultramicroscopy
دوره 110 6 شماره
صفحات -
تاریخ انتشار 2010